A Number Theory Problem
Let $a$, $b$, and $n$ be positive integers with $a > b > 1$. Suppose that $b$ is odd and that $b^n$ divides $a^n - 1$. Show that $a ^ b > \frac{3 ^ n}{n}$.
Replace sorry in the template below with your solution. The Mathlib version currently used is v4.26.0.
import Mathlib.Algebra.Ring.Parity
theorem solution {a b n : ℕ} (hs : a > b ∧ b > 1) (hn : n > 0) (ho : Odd b)
(hd : b ^ n ∣ a ^ n - 1) : n * a ^ b > 3 ^ n := sorry
Login to submit a solution.